If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2-36=0
a = 16; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·16·(-36)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48}{2*16}=\frac{-48}{32} =-1+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48}{2*16}=\frac{48}{32} =1+1/2 $
| 4|x-5|+8=20 | | (6x-6)(7x+1)+55=180 | | n÷4=13.53 | | (10+x)×2=4 | | (6+x)÷3=-10 | | 0.01^x=0.99 | | -2c=-20 | | x²+8x+18=24 | | x²+8x+64=12 | | x=7x-29 | | x=(−70+17x)√ | | Y=x^2+6x-71 | | 16x+13+19x-8=360 | | x-(-20)=32 | | 3m²-13m-10=0 | | v²+8v+12=0 | | 6q²-3q=5q²-8q+14 | | 4a+6=4 | | (170/90)^1/10-1=r | | x^2-22x+120.5=0 | | 6(x-7)=6x-42(7)= | | -9=-23+7x^2 | | 8y+5-4y+1=36 | | 3x-2(x-1)=x+5 | | 30=5x∴x= | | -7x-2=5x+10 | | 10k+5+0=-2k+-3k+80 | | Y=15-14x | | (x+4)3=6 | | -5z=-3 | | 9z=180;z=20 | | 2y/9=3 |